百家天气预报网 > 天气常识 >

你了解过“天气系统”吗

发布时间:2021-01-27 15:16来源: http://www.baidu.com/

天气系统是一个地方的天气变化,是由于其中一个个移动的大大小小的系统(高压、低压等)引起的这些系统称为。气象卫星观测资料表明,大大小小的天气系统是相互交织、相互作用着、在大气运动过程中演变着。最大的天气系统范围可达2,000公里以上,最小的还不到1公里。尺度越大的系统,生命史越长;尺度越小的系统,生命史越短,较小系统往往是在较大尺度系统的孕育下形成、发展起来的,而较小系统的发展、壮大以后,又给较大系统以反作用,彼此相互联系,相互制约,关系错综复杂。各种天气系统有一定的空间范围,一定的新生、变化和消亡的过程。各种天气系统发展的不同阶段有其相应的天气现象分布。在天气预报中通过对于各种系统的预报,可以大致预报未来一段时间内的天气变化。许多天气系统的组合,构成大范围的天气形势,构成半球甚至全球的大气环流。

天气系统-介绍

天气系统是具有一定的温度、气压或风等气象要素空间结构特征的大气运动系统。如有的以空间气压分布为特征组成高压、低压、高压脊、低压槽等。有的则以风的分布特征来分,如气旋,反气旋,切变线等。有的又以温度分布特征来确定,如锋。还有则的以某些天气特征来分,如雷暴,热带云团等。通常构成天气系统的气压,风,温度及气象要素之间都有一定的配置关系。大气中各种天气系统的空间范围是不同的,水平尺度可从几公里到1—2千公里。其生命史也不同,从几小时到几天都有。

按照气象要素的空间分布而划分的具有典型特征的大气运动系统(通常指气压空间分布所组成的系统),如高(气)压、低(气)压、高压脊、低压槽等。有时指风分布的系统,如气旋环流、反气旋环流、切变线等。有时指温度分布的系统,如高温区、低温区、锋区等。有时指天气现象分布的系统,如雷暴、热带云团等。这一要素系统同另一要素系统之间常常有一定的配置关系。气压系统和风场之间的关系较好:低压和气旋环流相配置,有时称为低压,有时称为气旋;高压和反气旋相配置,有时称为高压,有时称为反气旋。气压系统和温度系统也常呈一定配置关系。如:低压和低温区相配置,称为冷低压或冷涡;低压和高温区相配置,称为热低压。气压系统还可同天气现象存在一定配置关系,如雷暴和(小)高压配置,称为雷暴高压。天气系统可以通过各种天气图和卫星云图等分析工具分析出来。

各类天气系统,都是在一定地理环境中形成、发展和演变着,都具有一定地理环境的特性。比如极地和高纬地区,终年严寒、干燥。这一环境特性成为极地和高纬地区的高空极涡、低槽和低空冷高压系统形成、发展的必要条件。赤道和低纬地区,终年高温、潮湿,大气处于不稳定状态,是对流天气系统形成、发展的重要基础。中纬度处于冷暖气流交汇地带,不仅冷、暖气团频繁交替,而且锋面、气旋系统得以形成、发展。天气系统的形成、活动,反过来又会给地理环境以影响。认识和掌握天气系统的结构、组成、运动变化规律以及同地理环境间的相互关系,了解气候的形成、变化和预测地理环境的演变都是十分重要的。

天气系统-特征尺度

各类天气系统有一定的特征尺度。空间尺度主要以天气系统的水平尺度的大小来衡量,水平尺度系指天气系统的波长或扰动直径;时间尺度以天气系统的生命史的时间长短来衡量,生命史系指天气系统由新生到消亡的生消过程。一般天气系统的水平尺度越大,其时间尺度也越长。

在20世纪40年代以前,地面观测站平均距离约为200~300公里,以此站距观测所得的资料分析出来的高、低压系统,称为天气系统,现在称为天气尺度天气系统。40年代,发展了高空气象观测(平均站距约为500公里),把从高空天气图上发现的、波长与地球半径相当的波动,称为行星尺度天气系统。

50年代前后,在研究对流性灾害天气时,发现了许多水平范围为一二百公里、几十公里甚至几公里的高、低压系统,统称为中小尺度天气系统。分析这类系统,必须建立稠密的观测网,比如在美国有所谓的α、β和γ观测网,站距分别约为50公里、8公里和2.5公里。到了70年代,用300~400公里格距进行数值天气预报时,往往因这种格距太大而分析不出一些具有对流性天气的系统,影响了预报效果。当格距缩小到100~200公里时,即可分析出来,后来就称这类尺度的系统为中间尺度天气系统。

天气系统-相关分类

大气中各类天气系统的特征尺度相差很大,有大至上万公里的,如超长波、副热带高压,也有小至几百米的,如龙卷。按特征尺度大致可分为五类,即:行星尺度天气系统、天气尺度天气系统、中间尺度天气系统、中尺度天气系统和小尺度天气系统。天气系统的分类在国际上也不完全统一。例如在美国分类术语中,将水平尺度由2000公里到2公里的系统,统称为中尺度天气系统,其中又分三类:

200~2000公里的称中尺度α天气系统,包括台风、锋面等;20~200公里的称中尺度β天气系统,包括龙卷、飑线等;2~20公里的称中尺度γ天气系统,包括雷暴单体等。而在日本则将2000公里到200公里范围内的系统,称为中间尺度天气系统,将200公里到1公里范围的系统,称为中尺度天气系统。此外,也有将行星尺度天气系统和天气尺度天气系统统称为大尺度天气系统,把凡比天气尺度小的天气系统,包括中间尺度、中尺度和小尺度天气系统,统称为次天气尺度天气系统;也有人只把比天气尺度系统小一些的系统(即专指中间尺度天气系统),称为次天气尺度天气系统。更客观、更统一的天气系统分类尚得进一步研究。

在高空天气图上,也有按整个纬圈的波数来划分天气系统的,通常把波数为1~3的波动称为超长波,波数为4~8的波动称为长波,它们都属于行星尺度天气系统,波数大于8的波动称为短波,相当于天气尺度天气系统或更小尺度的天气系统。

天气系统-尺度效应

各类天气系统的空间尺度(水平的和铅直的)和时间尺度,以及特征的水平风速,都是根据实际观测确定的。但有些量还无法直接观测,只能按大气动力方程进行计算。在进行数值计算时,要选择适当的空间格距,其大小由系统的特征尺度决定,这就是所谓的尺度效应。比如天气系统的特征铅直运动速度,可以根据连续方程由水平尺度和特征水平风速推算出来。

各类天气系统的铅直运动速度有一定的特征数值,如行星尺度天气系统为10-1厘米/秒,天气尺度天气系统为10°厘米/秒,小尺度天气系统的铅直速度约为天气尺度天气系统100倍,即102厘米/秒。

自40年代末期出现尺度分析方法以后,人们常常将完全的运动方程,按照各类天气系统的特征尺度进行简化,研究各类系统大气运动的规律以及系统的移动。如研究天气尺度天气系统可以应用准地转平衡近似和静力学关系,而中小尺度天气系统则不满足地转平衡和静力平衡。

天气系统-演化消亡

天气系统总是处在不断地新生、发展和消亡之中。各种天气系统有不同的生消条件和能量来源。即使特征尺度同属一类的系统,其生消条件和能量来源也有所不同。比如温带气旋的发展条件,主要由其上空涡度平流所引起的空气辐散的强弱决定,其能量来源于大气的斜压性所储存的有效势能。台风的发生和维持是由于热带扰动的潜热释放,而潜热的释放同热带大气的位势不稳定和对流不稳定有关,其能量主要来源于海洋供给的水汽,在凝结过程中释放的潜热。强对流性的中小尺度天气系统,主要是由于位势不稳定空气受到急剧抬升而发展起来的,其能量也是来源于潜热释放。再者,天气系统往往不是闭合的,一个系统的空气经常不停地与周围系统的空气发生交换,随着这种交换,系统与系统之间的动量、能量等进行交换,从而引起系统的生消以及系统之间的相互作用。一般来说,大的天气系统制约并孕育着小的天气系统的发生和发展,小的天气系统产生后又能对大的天气系统的维持和加强起反馈作用。研究天气系统生消的条件和能量来源,以及研究系统之间的相互作用是天气学的主要任务之一。

天气系统与大气环流之间,不仅在流型上有关联,而且存在着内在的联系。如大尺度天气系统的活动,通过热量、动量的南北输送以及能量的转换,对于大气环流的维持起着重要作用。而大气环流的热力状况和基本风系的特点,如西风气流的水平变化和垂直变化等,又反过来制约着大尺度天气系统,直接影响着大尺度天气系统的发展。天气系统组合的演变,如纬向环流的恢复,波动群速的传播,以及行星尺度天气系统的发展等,可以导致相当广泛地区甚至全球范围大气环流的变化。大气环流的变化又是造成大范围长时期天气变化的条件和机制。从事短期天气预报,可以主要考虑单一的天气系统的变化,而从事中期、长期天气预报则需要研究天气系统组合的演变规律,需要研究超长波以至整个大气环流的演变规律。